Director, NHGRI Center for Excellence in Genomic Science
Robert Winthrop Professor of Genetics, Harvard Medical School
Professor of Health Sciences and Technology, Harvard and MIT
Founding Core Faculty and Lead, Wyss Institute, Harvard University
Dr. Church is Professor of Genetics at Harvard Medical
School and Professor of Health Sciences and Technology at Harvard and the
Massachusetts Institute of Technology (MIT), a founding member of the Wyss
Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic,
environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN
Projects, and Director of the National Institutes of Health Center for
Excellence in Genomic Science.
Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.
He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.
Director, NHGRI Center for Excellence in Genomic Science
Robert Winthrop Professor of Genetics, Harvard Medical School
Professor of Health Sciences and Technology, Harvard and MIT
Founding Core Faculty and Lead, Wyss Institute, Harvard University
Dr. Church is Professor of Genetics at Harvard Medical
School and Professor of Health Sciences and Technology at Harvard and the
Massachusetts Institute of Technology (MIT), a founding member of the Wyss
Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic,
environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN
Projects, and Director of the National Institutes of Health Center for
Excellence in Genomic Science.
Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.
He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.
Journal article
Gene drives are selfish genetic elements which promise to be powerful tools in the fight against vector-borne diseases such as malaria. We previously proposed population replacement gene drives designed to better withstand the evolution of resistance by homing through haplolethal loci. Because most mutations in the wild-type allele that would otherwise confer resistance are lethal, only successful drive homing permits the cell to survive. Here we outline the development and characterization of...
Journal article
Robust expression of guide RNA (gRNA) is essential for successful implementation of CRISPR-Cas9 genome-editing methods. The gRNA components, such as an RNA polymerase promoter followed by the gRNA coding sequence and an RNA polymerase terminator sequence, and the Cas9 protein are expressed either via an all-in-one plasmid or separate dedicated plasmids. The preparation of such plasmids involves a laborious multi-day process of DNA assembly, bacterial cloning, validation, purification and...