Share

George Church

Ph.D.

Director, NHGRI Center for Excellence in Genomic Science

Robert Winthrop Professor of Genetics, Harvard Medical School

Professor of Health Sciences and Technology, Harvard and MIT

Founding Core Faculty and Lead, Wyss Institute, Harvard University

Dr. Church  is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), a founding member of the Wyss Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic, environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN Projects, and Director of the National Institutes of Health Center for Excellence in Genomic Science. 

Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.

He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.

George Church

Ph.D.

Director, NHGRI Center for Excellence in Genomic Science

Robert Winthrop Professor of Genetics, Harvard Medical School

Professor of Health Sciences and Technology, Harvard and MIT

Founding Core Faculty and Lead, Wyss Institute, Harvard University

Dr. Church  is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), a founding member of the Wyss Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic, environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN Projects, and Director of the National Institutes of Health Center for Excellence in Genomic Science. 

Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.

He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.

Recent Publications

Expansion in situ genome sequencing links nuclear abnormalities to aberrant chromatin regulation

Published On 2025 May 29

Journal article

Microscopy and genomics are used to characterize cell function, but approaches to connect the two types of information are lacking, particularly at subnuclear resolution. Here, we describe expansion in situ genome sequencing (ExIGS), a technology that enables sequencing of genomic DNA and superresolution localization of nuclear proteins in single cells. Applying ExIGS to progeria-derived fibroblasts revealed that lamin abnormalities are linked to hotspots of aberrant chromatin regulation that...


DNA-PAINT Imaging with Hydrogel Imprinting and Clearing

Published On 2025 May 09

Journal article

Hydrogel-embedding is a versatile technique in fluorescence microscopy, offering stabilization, optical clearing, and the physical expansion of biological specimens. DNA-PAINT is a super-resolution microscopy approach based on the diffusion and transient binding of fluorescently labeled oligos, but its feasibility in hydrogels has not yet been explored. In this study, we demonstrate that polyacrylamide hydrogels support sufficient diffusion for effective DNA-PAINT imaging. Using...