Share

George Church

Ph.D.

Director, NHGRI Center for Excellence in Genomic Science

Robert Winthrop Professor of Genetics, Harvard Medical School

Professor of Health Sciences and Technology, Harvard and MIT

Founding Core Faculty and Lead, Wyss Institute, Harvard University

Dr. Church  is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), a founding member of the Wyss Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic, environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN Projects, and Director of the National Institutes of Health Center for Excellence in Genomic Science. 

Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.

He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.

George Church

Ph.D.

Director, NHGRI Center for Excellence in Genomic Science

Robert Winthrop Professor of Genetics, Harvard Medical School

Professor of Health Sciences and Technology, Harvard and MIT

Founding Core Faculty and Lead, Wyss Institute, Harvard University

Dr. Church  is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), a founding member of the Wyss Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic, environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN Projects, and Director of the National Institutes of Health Center for Excellence in Genomic Science. 

Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.

He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.

Recent Publications

Medical digital twins: enabling precision medicine and medical artificial intelligence

Published On 2025 Jun 15

Journal article

The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and...


Aging on Chip: Harnessing the Potential of Microfluidic Technologies in Aging and Rejuvenation Research

Published On 2025 Jun 13

Journal article

Aging is a complex process and the main risk factor for many common human diseases. Traditional aging research using short-lived animal models and two-dimensional cell cultures has led to key discoveries, but their relevance to human aging remains debatable. Microfluidics, a rapidly growing field that manipulates small volumes of fluids within microscale channels, offers new opportunities for aging research. By enabling the development of advanced three-dimensional cellular models that closely...