Share

George Church

Ph.D.

Director, NHGRI Center for Excellence in Genomic Science

Robert Winthrop Professor of Genetics, Harvard Medical School

Professor of Health Sciences and Technology, Harvard and MIT

Founding Core Faculty and Lead, Wyss Institute, Harvard University

Dr. Church  is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), a founding member of the Wyss Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic, environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN Projects, and Director of the National Institutes of Health Center for Excellence in Genomic Science. 

Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.

He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.

George Church

Ph.D.

Director, NHGRI Center for Excellence in Genomic Science

Robert Winthrop Professor of Genetics, Harvard Medical School

Professor of Health Sciences and Technology, Harvard and MIT

Founding Core Faculty and Lead, Wyss Institute, Harvard University

Dr. Church  is Professor of Genetics at Harvard Medical School and Professor of Health Sciences and Technology at Harvard and the Massachusetts Institute of Technology (MIT), a founding member of the Wyss Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic, environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN Projects, and Director of the National Institutes of Health Center for Excellence in Genomic Science. 

Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.

He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.

Recent Publications

An Interpretable Deep Embedding Model for Few and Imbalanced Biomedical Data

Published On 2022 Nov 21

Journal article

In healthcare, training examples are usually hard to obtain (e.g., cases of a rare disease), or the cost of labelling data is high. With a large number of features ( p) be measured in a relatively small number of samples ( N), the "big p, small N" problem is an important subject in healthcare studies, especially on the genomic data. Another major challenge of effectively analyzing medical data is the skewed class distribution caused by the imbalance between different class labels. In addition,...


A general approach to identify cell-permeable and synthetic anti-CRISPR small molecules

Published On 2022 Nov 18

Journal article

The need to control the activity and fidelity of CRISPR-associated nucleases has resulted in a demand for inhibitory anti-CRISPR molecules. The small-molecule inhibitor discovery platforms available at present are not generalizable to multiple nuclease classes, only target the initial step in the catalytic activity and require high concentrations of nuclease, resulting in inhibitors with suboptimal attributes, including poor potency. Here we report a high-throughput discovery pipeline consisting...