Director, NHGRI Center for Excellence in Genomic Science
Robert Winthrop Professor of Genetics, Harvard Medical School
Professor of Health Sciences and Technology, Harvard and MIT
Founding Core Faculty and Lead, Wyss Institute, Harvard University
Dr. Church is Professor of Genetics at Harvard Medical
School and Professor of Health Sciences and Technology at Harvard and the
Massachusetts Institute of Technology (MIT), a founding member of the Wyss
Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic,
environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN
Projects, and Director of the National Institutes of Health Center for
Excellence in Genomic Science.
Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.
He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.
Director, NHGRI Center for Excellence in Genomic Science
Robert Winthrop Professor of Genetics, Harvard Medical School
Professor of Health Sciences and Technology, Harvard and MIT
Founding Core Faculty and Lead, Wyss Institute, Harvard University
Dr. Church is Professor of Genetics at Harvard Medical
School and Professor of Health Sciences and Technology at Harvard and the
Massachusetts Institute of Technology (MIT), a founding member of the Wyss
Institute, and Director of PersonalGenomes.org, the world’s only open-access information on human genomic,
environmental, and trait data. Dr. Church is Director of IARPA & NIH BRAIN
Projects, and Director of the National Institutes of Health Center for
Excellence in Genomic Science.
Dr. Church is known for pioneering the fields of personal genomics and synthetic biology. He developed the first methods for the first genome sequence & dramatic cost reductions since then (down from $3 billion to $600), contributing to nearly all “next generation sequencing” methods and companies. His team invented CRISPR for human stem cell genome editing and other synthetic biology technologies and applications – including new ways to create organs for transplantation, gene therapies for aging reversal, and gene drives to eliminate Lyme Disease and Malaria. He has co-authored more than 590 papers and 155 patent publications, and one book, “Regenesis”.
He has received numerous awards including the 2011 Bower Award and Prize for Achievement in Science from the Franklin Institute, the Time 100, and election to the National Academy of Sciences and Engineering.
Journal article
The notion of medical digital twins is gaining popularity both within the scientific community and among the general public; however, much of the recent enthusiasm has occurred in the absence of a consensus on their fundamental make-up. Digital twins originate in the field of engineering, in which a constantly updating virtual copy enables analysis, simulation, and prediction of a real-world object or process. In this Health Policy paper, we evaluate this concept in the context of medicine and...
Journal article
Aging is a complex process and the main risk factor for many common human diseases. Traditional aging research using short-lived animal models and two-dimensional cell cultures has led to key discoveries, but their relevance to human aging remains debatable. Microfluidics, a rapidly growing field that manipulates small volumes of fluids within microscale channels, offers new opportunities for aging research. By enabling the development of advanced three-dimensional cellular models that closely...