Assistant Professor of Biomedical Informatics
Harvard Medical School
Dr. Farhat is an Assistant Professor of of
Biomedical Informatics atHarvard Medical School and a a practicing physician at
the Massachusetts General Hospital Division of Pulmonary and Critical Care
Medicine.
Dr. Farhat's research focuses on the development and application of methods for associating genotype and phenotype in infectious disease pathogens, with a strong emphasis on translation to better diagnostics and surveillance in resource-poor settings. Farhat's work has focused on bacterial and viral pathoges and spans the spectrum from computational analysis to field studies. She is PI and Co-Investigator on several large projects funded by NIH including the NIAID and the BD2K initiative.
Maha Farhat holds an MD from the McGill University Faculty of Medicine and a MSc in biostatistics from the Harvard Chan School of Public Health.
Assistant Professor of Biomedical Informatics
Harvard Medical School
Dr. Farhat is an Assistant Professor of of
Biomedical Informatics atHarvard Medical School and a a practicing physician at
the Massachusetts General Hospital Division of Pulmonary and Critical Care
Medicine.
Dr. Farhat's research focuses on the development and application of methods for associating genotype and phenotype in infectious disease pathogens, with a strong emphasis on translation to better diagnostics and surveillance in resource-poor settings. Farhat's work has focused on bacterial and viral pathoges and spans the spectrum from computational analysis to field studies. She is PI and Co-Investigator on several large projects funded by NIH including the NIAID and the BD2K initiative.
Maha Farhat holds an MD from the McGill University Faculty of Medicine and a MSc in biostatistics from the Harvard Chan School of Public Health.
Journal article
Within-host Mycobacterium tuberculosis (Mtb) diversity may detect antibiotic resistance or predict tuberculosis treatment failure and is best captured through sequencing directly from sputum. Here, we compared three sample pre-processing steps for DNA decontamination and studied the yield of a new target enrichment protocol for optimal whole-genome sequencing (WGS) from direct patient samples. Mtb-positive NALC-NaOH-treated patient sputum sediments were pooled, and heat inactivated, split in...
Journal article
Phase variation induced by insertions and deletions (INDELs) in genomic homopolymeric tracts (HT) can silence and regulate genes in pathogenic bacteria, but this process is not characterized in MTBC (Mycobacterium tuberculosis complex) adaptation. We leverage 31,428 diverse clinical isolates to identify genomic regions including phase-variants under positive selection. Of 87,651 INDEL events that emerge repeatedly across the phylogeny, 12.4% are phase-variants within HTs (0.02% of the genome by...